Controlled release of TGF-beta 1 from RADA self-assembling peptide hydrogel scaffolds

نویسندگان

  • Ao Zhou
  • Shuo Chen
  • Bin He
  • Weikang Zhao
  • Xiaojun Chen
  • Dianming Jiang
چکیده

Bioactive mediators, cytokines, and chemokines have an important role in regulating and optimizing the synergistic action of materials, cells, and cellular microenvironments for tissue engineering. RADA self-assembling peptide hydrogels have been proved to have an excellent ability to promote cell proliferation, wound healing, tissue repair, and drug delivery. Here, we report that D-RADA16 and L-RADA16-RGD self-assembling peptides can form stable second structure and hydrogel scaffolds, affording the slow release of growth factor (transforming growth factor cytokine-beta 1 [TGF-beta 1]). In vitro tests demonstrated that the plateau release amount can be obtained till 72 hours. Moreover, L-RADA16, D-RADA16, and L-RADA16-RGD self-assembling peptide hydrogels containing TGF-beta 1 were used for 3D cell culture of bone mesenchymal stem cells of rats for 2 weeks. The results revealed that these three RADA16 peptide hydrogels had a significantly favorable influence on proliferation of bone mesenchymal stem cells and hold some promise in slow and sustained release of growth factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Straightforward and Cost-Effective Production of RADA-16I Peptide in Escherichia coli

Background: RADA16I represents one of promising hydrogel forming peptides. Several implementations of RADA16I hydrogels have proven successful in the field of regenerative medicine and tissue engineering. However, RADA16I peptides used in various studies utilize synthetic peptides and so far, only two research articles have been published on RADA16I peptide recombinant producti...

متن کامل

Two-layered injectable self-assembling peptide scaffold hydrogels for long-term sustained release of human antibodies.

The release kinetics for human immunoglobulin (IgG) through the permeable structure of nanofiber scaffold hydrogels consisting of the ac-(RADA)(4)-CONH(2) and ac-(KLDL)(3)-CONH(2) self-assembling peptides were studied during a period of 3 months. Self assembling peptides are a class of stimuli-responsive materials which undergo sol-gel transition in the presence of an electrolyte solution such ...

متن کامل

Effects of Dexamethasone on Mesenchymal Stromal Cell Chondrogenesis and Aggrecanase Activity: Comparison of Agarose and Self-Assembling Peptide Scaffolds.

OBJECTIVE Dexamethasone (Dex) is a synthetic glucocorticoid that has pro-anabolic and anti-catabolic effects in cartilage tissue engineering systems, though the mechanisms by which these effects are mediated are not well understood. We tested the hypothesis that the addition of Dex to chondrogenic medium would affect matrix production and aggrecanase activity of human and bovine bone marrow str...

متن کامل

Slow release of molecules in self-assembling peptide nanofiber scaffold.

Biological hydrogels consisting of self-assembling peptide nanofibers are potentially excellent materials for various controlled molecular release applications. The individual nanofiber consists of ionic self-complementary peptides with 16 amino acids (RADA16, Ac-RADARADARADARADA-CONH(2)) that are characterized by a stable beta-sheet structure and undergo self-assembly into hydrogels containing...

متن کامل

Spatial distribution of mineralized bone matrix produced by marrow mesenchymal stem cells in self-assembling peptide hydrogel scaffold.

We evaluated the osteogenic differentiation of mesenchymal stem cells (MSCs) using a new class of synthetic self-assembling peptide hydrogels, RADA 16, as a scaffold for three-dimensional culture. MSCs derived from rat bone marrow were culture-expanded and seeded into the hydrogel and further cultured in osteogenic medium containing beta-glycerophosphate, ascorbic acid, and dexamethasone for 2-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016